SciTech-Mathematics-Probability+Statistics-Distribution: fitter(Jupyter/Scipy/Python) + distributionFitter(分布拟合器): 交互式概率分布拟合 导入MATLAB® 工作区的数据
Distribution Fitter for Jupyter/Scipy/Python
-
Using scipy for data fitting
https://education.molssi.org/python-data-analysis/03-data-fitting/index.html -
scipy.stats.fit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fit.html -
scipy.stats
https://docs.scipy.org/doc/scipy/reference/stats.html -
fitter
:
这是个集成package, 代只有三个代码源文件,实现上用的是“scipy.stats”和“PyData”系列
https://fitter.readthedocs.io/en/latest/tuto.html -
reliability
reliability engineering
https://reliability.readthedocs.io/en/latest
Distribution Fitter of Matlab
Fit
probability distributions to data:
https://ww2.mathworks.cn/help/stats/distributionfitter-app.html?lang=en
https://ww2.mathworks.cn/help/stats/distributionfitter.html
说明
distributionFitter(分布拟合器): 交互式对 导入 MATLAB® 工作区 的 数据 进行 概率分布拟合.
您可以从 22 个内置概率分布集合进行选择,也可以创建您自己的自定义分布.
该 App 在数据直方图上叠加显示
拟合分布图。
可用的绘图包括:
- PDF(概率密度函数)、
- CDF(累积分布函数 )、
- 概率图
- 生存函数
您可以将拟合的参数值作为概率分布对象导出到
工作区,并使用
对象函数执行
进一步分析。
有关使用这些对象的详细信息,请参阅[Working with Probability Distributions](Working with Probability Distributions)。有关分布拟合器的编程工作流,请参阅 distributionFitter。
Distribution-Specific Functions and Generic Distribution Functions
Using distribution-specific functions and generic distribution functions is useful for:
- generating random numbers,
- computing summary statistics inside a loop or script, and passing a
cdf
orpdf
as a function handle to another function. - You can also use these functions to perform computations on arrays of parameter values rather than a single set of parameters.
Distribution-specific functions
— Some of the supported distributions have distribution-specific functions.
These functions use the following abbreviations, as in normpdf
, normcdf
, norminv
, normstat
, normfit
, normlike
, and normrnd
:
pdf
— Probability density functionscdf
— Cumulative distribution functionsinv
—Inverse
cdf(cumulative distribution functions)stat
— Distribution statistics functionsfit
— Distribution Fitter functionslike
— Negative loglikelihood functionsrnd
— Random number generators
Generic distribution functions
— Use cdf
, icdf
, mle
, pdf
, and random with a specified
distribution name and parameters.
cdf
— Cumulative distribution functionicdf
—Inverse
cdf(cumulative distribution function)mle
— Distribution fitting functionpdf
— Probability density functionrandom
— Random numbergenerating
function
Analyze Distribution Using Distribution-Specific Functions
This example shows how to use
distribution-specific functions to perform
a multistep analysis on a fitted distribution.
The analysis illustrates how to:
Fit
a probability distribution to sample data that contains exam grades of 120 students by usingnormfit
.Plot
a histogram of the exam grade data, overlaid with a plot of the pdf of the fitted distribution, by using plot andnormpdf
.- Compute the boundary for the top 10 percent of student grades by using
norminv
. - Save the estimated distribution parameters by using save.
You can perform the same analysis using a probability distribution object.
See Analyze Distribution Using Probability Distribution Objects.