SciTech-Mathematics-Probability+Statistics-Distribution: fitter(Jupyter/Scipy/Python) + distributionFitter(分布拟合器): 交互式概率分布拟合 导入MATLAB® 工作区的数据

abaelhe / 2024-11-07 / 原文

Distribution Fitter for Jupyter/Scipy/Python

  • Using scipy for data fitting
    https://education.molssi.org/python-data-analysis/03-data-fitting/index.html

  • scipy.stats.fit
    https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fit.html

  • scipy.stats
    https://docs.scipy.org/doc/scipy/reference/stats.html

  • fitter:
    这是个集成package, 代只有三个代码源文件,实现上用的是“scipy.stats”和“PyData”系列
    https://fitter.readthedocs.io/en/latest/tuto.html

  • reliability reliability engineering
    https://reliability.readthedocs.io/en/latest


Distribution Fitter of Matlab

Fit probability distributions to data:
https://ww2.mathworks.cn/help/stats/distributionfitter-app.html?lang=en
https://ww2.mathworks.cn/help/stats/distributionfitter.html

说明

distributionFitter(分布拟合器): 交互式对 导入 MATLAB® 工作区数据 进行 概率分布拟合.
您可以从 22 个内置概率分布集合进行选择,也可以创建您自己的自定义分布.
该 App 在数据直方图叠加显示拟合分布图
可用的绘图包括:

  • PDF(概率密度函数)、
  • CDF(累积分布函数 )、
  • 概率图
  • 生存函数

您可以将拟合参数值作为概率分布对象导出到工作区并使用对象函数执行进一步分析
有关使用这些对象的详细信息,请参阅[Working with Probability Distributions](Working with Probability Distributions)。有关分布拟合器的编程工作流,请参阅 distributionFitter。


Distribution-Specific Functions and Generic Distribution Functions

Using distribution-specific functions and generic distribution functions is useful for:

  • generating random numbers,
  • computing summary statistics inside a loop or script, and passing a cdf or pdf as a function handle to another function.
  • You can also use these functions to perform computations on arrays of parameter values rather than a single set of parameters.

Distribution-specific functions

— Some of the supported distributions have distribution-specific functions.
These functions use the following abbreviations, as in normpdf, normcdf, norminv, normstat, normfit, normlike, and normrnd:

  • pdfProbability density functions
  • cdfCumulative distribution functions
  • invInverse cdf(cumulative distribution functions)
  • statDistribution statistics functions
  • fitDistribution Fitter functions
  • likeNegative loglikelihood functions
  • rndRandom number generators

Generic distribution functions

— Use cdf, icdf, mle, pdf, and random with a specified distribution name and parameters.

  • cdfCumulative distribution function
  • icdfInverse cdf(cumulative distribution function)
  • mleDistribution fitting function
  • pdfProbability density function
  • randomRandom number generating function



Analyze Distribution Using Distribution-Specific Functions

This example shows how to use distribution-specific functions to perform a multistep analysis on a fitted distribution.

The analysis illustrates how to:

  • Fit a probability distribution to sample data that contains exam grades of 120 students by using normfit.
  • Plot a histogram of the exam grade data, overlaid with a plot of the pdf of the fitted distribution, by using plot and normpdf.
  • Compute the boundary for the top 10 percent of student grades by using norminv.
  • Save the estimated distribution parameters by using save.

You can perform the same analysis using a probability distribution object.
See Analyze Distribution Using Probability Distribution Objects.