欧拉降幂
Concept-既约剩余代表系
\(\forall p \in Z\)
设集合\(A=\{a_1,a_2,a_3\dots,a_{p-1}\}\)
若A满足
\[\begin{cases}
\forall m\in Z且gcd(m,p)=1,\exists x\in A,x≡m(mod p)\\
\forall a,b\in Z,gcd(a,b)=1\\
\end{cases}\]
\(\forall p \in Z\)
设集合\(A=\{a_1,a_2,a_3\dots,a_{p-1}\}\)
若A满足