密码密码密码
参考文章
常见的有 RC4、Salsa20 以及 ChaCha20.之前一直是识别加密算法,虽然只会识别一个rc4,遇到其他还是傻眼,一直没想到流密码的密文是仅由明文与密钥流异或得到的,以此识别出流密码后,动调获取密钥流或者将密文patch进去拿输出即可.(明明就在高神的流密码第一段,这么久了才发现) 遇到的话,有时间就补 同上,暂时记一下例题[RCTF2022 checkserver],顺便附一个识别图,感觉好像见过 Tea类加密很好识别,delta=_0x9e3779b9会被魔改 与tea区别sum+=delta位置,key[(sum>>11) & 3]与key[sum & 3],其中detal会被魔改,移位数可能被魔改 一般来说,识别可以通过,delta 以及 这里v指密文或者明文:n指round[len(flag)/4]正是加密,负是解密:k指密钥 魔改点: DES的密钥位64bit,但每个字节的第八位(最后一位)是奇偶校验位,所以有效密钥为56bit 主要通过 S盒 以及各个置乱表来识别,可以使用插件来自动化识别这些特征。 AES(Advanced Encryption Standard,高级加密标准),分组大小为128位,根据密钥长度和轮数可以分为 AES-128、AES-192、AES-256,具体区别如下表: 对于如何识别是哪一种,可能看密钥大小不好观察,可以选择看循环的次数 魔改 SM4是国密算法,由国家密码局发布,分组长度为128比特,密钥长度为128比特。 解密方法 拿到密钥与密文,确认加密模式就可以直接在cipherchef里面解密. 识别方法 SM4也有着 S盒、FK、CK几个常量表,所以使用插件也可以自动化识别。 MD5消息摘要算法(MD5,Message-Digest Algorithm) 代码实现 识别 魔改: 密码学中,分组密码的工作模式(mode of operation)允许使用同一个分组密码密钥对多于一块的数据进行加密,并保证其安全性。 最简单的加密模式即为电子密码本(Electronic codebook,ECB)模式。需要加密的消息按照块密码的块大小被分为数个块,并对每个块进行独立加密。 在CBC模式中,每个明文块先与前一个密文块进行异或后,再进行加密。在这种方法中,每个密文块都依赖于它前面的所有明文块。同时,为了保证每条消息的唯一性,在第一个块中需要使用初始化向量。 密文反馈(CFB,Cipher feedback)模式类似于CBC,可以将块密码变为自同步的流密码;工作过程亦非常相似,CFB的解密过程几乎就是颠倒的CBC的加密过程: 输出反馈模式(Output feedback, OFB)可以将块密码变成同步的流密码。它产生密钥流的块,然后将其与明文块进行异或,得到密文。与其它流密码一样,密文中一个位的翻转会使明文中同样位置的位也产生翻转。这种特性使得许多错误校正码,例如奇偶校验位,即使在加密前计算,而在加密后进行校验也可以得出正确结果。流密码
RC4
/*初始化函数*/
void rc4_init(unsigned char *s, unsigned char *key, unsigned long Len) {
int i = 0, j = 0;
char k[256] = {0};
unsigned char tmp = 0;
for (i = 0; i < 256; i++) {
s[i] = i;
k[i] = key[i % Len];
}
for (i = 0; i < 256; i++) {
j = (j + s[i] + k[i]) % 256;
tmp = s[i];
s[i] = s[j]; // 交换s[i]和s[j]
s[j] = tmp;
}
}
/*加解密*/
void rc4_crypt(unsigned char *s, unsigned char *Data, unsigned long Len) {
int i = 0, j = 0, t = 0;
unsigned long k = 0;
unsigned char tmp;
for (k = 0; k < Len; k++) {
i = (i + 1) % 256;
j = (j + s[i]) % 256;
tmp = s[i];
s[i] = s[j]; // 交换s[x]和s[y]
s[j] = tmp;
t = (s[i] + s[j]) % 256;
Data[k] ^= s[t];
}
}
Salsa20
ChaCha20
分组加密
Tea
#include
void encrypt (uint32_t* v, uint32_t* k) {
uint32_t v0=v[0], v1=v[1], sum=0, i; /* set up */
uint32_t delta=0x9e3779b9; /* a key schedule constant */
uint32_t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */
for (i=0; i < 32; i++) { /* basic cycle start */
sum += delta;
v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);
v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);
} /* end cycle */
v[0]=v0; v[1]=v1;
}
void decrypt (uint32_t* v, uint32_t* k) {
uint32_t v0=v[0], v1=v[1], sum=0xC6EF3720, i; /* set up */
uint32_t delta=0x9e3779b9; /* a key schedule constant */
uint32_t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */
for (i=0; i<32; i++) { /* basic cycle start */
v1 -= ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);
v0 -= ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);
sum -= delta;
} /* end cycle */
v[0]=v0; v[1]=v1;
}
XTea
#include
/* take 64 bits of data in v[0] and v[1] and 128 bits of key[0] - key[3] */
void encipher(unsigned int num_rounds, uint32_t v[2], uint32_t const key[4]) {
unsigned int i;
uint32_t v0=v[0], v1=v[1], sum=0, delta=0x9E3779B9;
for (i=0; i < num_rounds; i++) {
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + key[sum & 3]);
sum += delta;
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + key[(sum>>11) & 3]);
}
v[0]=v0; v[1]=v1;
}
void decipher(unsigned int num_rounds, uint32_t v[2], uint32_t const key[4]) {
unsigned int i;
uint32_t v0=v[0], v1=v[1], delta=0x9E3779B9, sum=delta*num_rounds;
for (i=0; i < num_rounds; i++) {
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + key[(sum>>11) & 3]);
sum -= delta;
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + key[sum & 3]);
}
v[0]=v0; v[1]=v1;
}
XXTea
#define DELTA 0x9e3779b9
#define MX ((z>>5^y<<2) + (y>>3^z<<4) ^ (sum^y) + (k[p&3^e]^z))
long btea(long* v, long n, long* k) {
unsigned long z=v[n-1], y=v[0], sum=0, e;
long p, q ;
if (n > 1) { /* Coding Part */
q = 6 + 52/n;
while (q-- > 0) {
sum += DELTA;
e = (sum >> 2) & 3;
for (p=0; p<n-1; p++) y = v[p+1], z = v[p] += MX;
y = v[0];
z = v[n-1] += MX;
}
return 0 ;
} else if (n < -1) { /* Decoding Part */
n = -n;
q = 6 + 52/n;
sum = q*DELTA ;
while (sum != 0) {
e = (sum >> 2) & 3;
for (p=n-1; p>0; p--) z = v[p-1], y = v[p] -= MX;
z = v[n-1];
y = v[0] -= MX;
sum -= DELTA;
}
return 0;
}
return 1;
}
round = 6 + 52/n
、(sum >> 2) & 3
这种特殊的运算来判断。
DES
AES
AES-128
AES-192
AES-256
密钥长度
128
192
256
轮数
10
12
14
整体流程
整体来说AES加密有如下几步
白盒AES(暂时还没学)
2022年国赛分区赛逆向有个,解法可以参考下面的文章:
https://bbs.pediy.com/thread-254042.htm
SM4
非对称加密
RSA
或者一些密码学的库 OpenSSL、Crypto++、libtomcrypt(用的GMP) 也有着对应的实现.
单向散列函数
MD5
// Constants are the integer part of the sines of integers (in radians) * 2^32.
const uint32_t k[64] = {
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
};
// r specifies the per-round shift amounts
const uint32_t r[] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};
#define LEFTROTATE(x, c) (((x) << (c)) | ((x) >> (32 - (c))))
void to_bytes(uint32_t val, uint8_t *bytes)
{
bytes[0] = (uint8_t) val;
bytes[1] = (uint8_t) (val >> 8);
bytes[2] = (uint8_t) (val >> 16);
bytes[3] = (uint8_t) (val >> 24);
}
uint32_t to_int32(const uint8_t *bytes)
{
return (uint32_t) bytes[0]
| ((uint32_t) bytes[1] << 8)
| ((uint32_t) bytes[2] << 16)
| ((uint32_t) bytes[3] << 24);
}
void md5(const uint8_t *initial_msg, size_t initial_len, uint8_t *digest) {
// These vars will contain the hash
uint32_t h0, h1, h2, h3;
// Message (to prepare)
uint8_t *msg = NULL;
size_t new_len, offset;
uint32_t w[16];
uint32_t a, b, c, d, i, f, g, temp;
// Initialize variables - simple count in nibbles:
h0 = 0x67452301;
h1 = 0xefcdab89;
h2 = 0x98badcfe;
h3 = 0x10325476;
//Pre-processing:
//append "1" bit to message
//append "0" bits until message length in bits ≡ 448 (mod 512)
//append length mod (2^64) to message
for (new_len = initial_len + 1; new_len % (512/8) != 448/8; new_len++);
msg = (uint8_t*)malloc(new_len + 8);
memcpy(msg, initial_msg, initial_len);
msg[initial_len] = 0x80; // append the "1" bit; most significant bit is "first"
for (offset = initial_len + 1; offset < new_len; offset++)
msg[offset] = 0; // append "0" bits
// append the len in bits at the end of the buffer.
to_bytes(initial_len*8, msg + new_len);
// initial_len>>29 == initial_len*8>>32, but avoids overflow.
to_bytes(initial_len>>29, msg + new_len + 4);
// Process the message in successive 512-bit chunks:
//for each 512-bit chunk of message:
for(offset=0; offset<new_len; offset += (512/8)) {
// break chunk into sixteen 32-bit words w[j], 0 ≤ j ≤ 15
for (i = 0; i < 16; i++)
w[i] = to_int32(msg + offset + i*4);
// Initialize hash value for this chunk:
a = h0;
b = h1;
c = h2;
d = h3;
// Main loop:
for(i = 0; i<64; i++) {
if (i < 16) {
f = (b & c) | ((~b) & d); // F
g = i;
} else if (i < 32) {
f = (d & b) | ((~d) & c); // G
g = (5*i + 1) % 16;
} else if (i < 48) {
f = b ^ c ^ d; // H
g = (3*i + 5) % 16;
} else {
f = c ^ (b | (~d)); // I
g = (7*i) % 16;
}
temp = d;
d = c;
c = b;
b = b + LEFTROTATE((a + f + k[i] + w[g]), r[i]);
a = temp;
}
// Add this chunk's hash to result so far:
h0 += a;
h1 += b;
h2 += c;
h3 += d;
}
// cleanup
free(msg);
//var char digest[16] := h0 append h1 append h2 append h3 //(Output is in little-endian)
to_bytes(h0, digest);
to_bytes(h1, digest + 4);
to_bytes(h2, digest + 8);
to_bytes(h3, digest + 12);
}
BaseXX系列
base64
基础知识
IV
分组大小
分组加密的工作模式(mode of operation)(搬搬搬)
分组密码自身只能加密长度等于密码分组长度的单块数据,若要加密变长数据,则数据必须先被划分为一些单独的密码块。通常而言,最后一块数据也需要使用合适填充方式将数据扩展到符合密码块大小的长度。一种工作模式描述了加密每一数据块的过程,并常常使用基于一个通常称为初始化向量的附加输入值以进行随机化,以保证安全。电子密码本(ECB)
密码块链接(CBC)
密文反馈(CFB)
输出反馈(OFB)
注意