自己配置ubuntu22.04深度学习环境过程中代码以及命令记录(自用)

mjddh / 2023-09-05 / 原文

自用记录,还望读者海涵,谢谢!
conda clean -a conda remove --name clam --all conda env create -n clam -f E:\\CLAM\\CLAM_Code\\docs\\clam.yaml wsl --list --verbose wsl --status wsl --shutdown wsl --unregister Ubuntu-22.04 sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak sudo vim /etc/apt/sources.list # 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释 deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse # deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-security main restricted universe multiverse # # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-security main restricted universe multiverse deb http://security.ubuntu.com/ubuntu/ jammy-security main restricted universe multiverse # deb-src http://security.ubuntu.com/ubuntu/ jammy-security main restricted universe multiverse # 预发布软件源,不建议启用 # deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-proposed main restricted universe multiverse # # deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-proposed main restricted universe multiverse sudo apt-get update sudo apt-get upgrade sudo apt install build-essential https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2023.07-2-Linux-x86_64.sh bash Anaconda3-2023.07-2-Linux-x86_64.sh conda config --show-sources sudo vim .condarc channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/ conda clean -i conda install "conda-build!=3.26.0" conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia 在已经安装好jupyter notebook的前提下, Alt+Ctrl+T打开终端, 先生成配置文件 :jupyter-notebook --generate-config 打开配置文件:code ~/.jupyter/jupyter_notebook_config.py(自己找到自己电脑的这个配置文件) 设置默认路径:(推荐写绝对路径),在c.NotebookApp.notebook_dir后面写上自己的工作环境路径(记得前面的#号去掉) 再次打开jupyter notebook默认的工作环境就变为自己设置的默认环境了。 import torch print('CUDA版本:',torch.version.cuda) print('Pytorch版本:',torch.__version__) print('显卡是否可用:','可用' if(torch.cuda.is_available()) else '不可用') print('显卡数量:',torch.cuda.device_count()) print('是否支持BF16数字格式:','支持' if (torch.cuda.is_bf16_supported()) else '不支持') print('当前显卡型号:',torch.cuda.get_device_name()) print('当前显卡的CUDA算力:',torch.cuda.get_device_capability()) print('当前显卡的总显存:',torch.cuda.get_device_properties(0).total_memory/1024/1024/1024,'GB') print('是否支持TensorCore:','支持' if (torch.cuda.get_device_properties(0).major >= 7) else '不支持') print('当前显卡的显存使用率:',torch.cuda.memory_allocated(0)/torch.cuda.get_device_properties(0).total_memory*100,'%')


conda安装:
conda install matplotlib
conda install -c conda-forge opencv